
144 CHAPTER 5. NEWTON’S METHOD. BOOTSTRAPPING.

5.2 Numerical methods for N–dimensional nonlinear

problems

For N dimensional problems there are no practical analogs of the bisection method.
However, Newton’s method can easily be extended to N dimensional problems. An
approximate Newton’s method similar to the secant method and based on finite
difference–type approximations also exists.

5.2.1 The N–dimensional Newton’s Method

Let F : R
N → R

N given by F (x) = (Fi(x))i=1:N , where Fi : R
N → R. Assume that

all the partial order derivatives of the functions Fi(x), i = 1 : N , are continuous.
We want to solve the nonlinear N -dimensional problem

F (x) = 0.

Recall from (1.40) that the gradient DF (x) of F (x) is an N ×N matrix:
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The recursion for Newton’s method follows from the linear Taylor expansion of
F (x), i.e.,

F (x) ≈ F (xk) + DF (xk)(x− xk); (5.18)

cf. (6.29) for a = xk. Here, DF (xk)(x− xk) is a matrix–vector multiplication. Let
x = xk+1 in (5.18). Approximating F (xk+1) by 0 (which happens in the limit, if
convergence to a solution for F (x) = 0 is achieved), we find that

0 ≈ F (xk) + DF (xk)(xk+1 − xk). (5.19)

Changing (5.19) into an equality and solving for xk+1, we obtain the following
recursion for Newton’s method for N dimensional problems:

xk+1 = xk − (DF (xk))
−1F (xk), ∀ k ≥ 0. (5.20)

At each step, the vector (DF (xk))
−1F (xk) must be computed. In practice,

the inverse matrix (DF (xk))
−1 is never explicitely computed, since this would be

very expensive computationally. Instead, we note that computing the vector vk =
(DF (xk))

−1F (xk) is equivalent to solving the linear system

DF (xk)vk = F (xk).

This is done using numerical linear algebra methods, e.g., by computing the LU de-
composition factors of the matrix DF (xk) and then doing a forward and a backward
substitution.
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It is not our goal here to discuss such methods; see [39] for details on numerical
linear algebra methods. We subsequently assume that a routine for solving lin-
ear systems called solve linear system exists such that, given a nonsingular square
matrix A and a vector b, the vector

x = solve linear system(A, b)

is the unique solution of the linear system Ax = b.
The vector vk = (DF (xk))

−1F (xk) can then be computed as

vk = solve linear system(DF (xk), F (xk)),

and recursion (5.20) can be written as

xk+1 = xk − solve linear system(DF (xk), F (xk)), ∀ k ≥ 0.

The N–dimensional Newton’s method iteration is stopped and convergence to a
solution to the problem F (x) = 0 is declared when the following two conditions are
satisfied:

||F (xnew)|| ≤ tol approx and ||xnew − xold|| ≤ tol consec, (5.21)

where xnew is the most recent value generated by Newton’s method and xold is
the value previously computed by the algorithm. Possible choices for the tolerance
factors are tol consec = 10−6 and tol approx = 10−9; see the pseudocode from
Table 5.4 for more details.

Table 5.4: Pseudocode for the N -dimensional Newton’s Method

Input:
x0 = initial guess
F (x) = given function
tol approx = largest admissible value of ||F (x)|| when solution is found
tol consec = largest admissible distance between

two consecutive approximations when solution is found

Output:
xnew = approximate solution for f(x) = 0

xnew = x0; xold = x0 − 1
while ( ||F (xnew)|| > tol approx ) or ( ||xnew − xold|| > tol consec )

xold = xnew

compute DF (xold)
xnew = xold − solve linear system(DF (xold), F (xold))

end

Note that || · || represents the Euclidean norm, i.e., ||v|| =
(∑N

i=1 |vi|2
)1/2

,

where v = (vi)i=1:N is a vector in R
N .
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As was the case for the one–dimensional version, the N–dimensional Newton’s
method converges quadratically if certain conditions are satisfied.

Theorem 5.3. Let x∗ be a solution of F (x) = 0, where F (x) is a function with
continuous second order partial derivatives. If DF (x∗) is a nonsingular matrix, and
if x0 is close enough to x∗, then Newton’s method converges quadratically, i.e., there
exists M > 0 and nM a positive integer such that

||xk+1 − x∗||
||xk − x∗||2 < M, ∀ k ≥ nM .

Example: Use Newton’s method to solve F (x) = 0, for

F (x) =

(
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Answer: Note that

DF (x) =
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.

We use the algorithm from Table 5.4 with tol consec = 10−6 and tol approx = 10−9.
For the initial guess

x0 =

(
1
2
3

)
, the solution x∗ =

( −1.690550759854953
1.983107242868416
−0.884558078475291

)

is found after 9 iterations.
For the initial guess

x0 =

(
2
2
2

)
, the solution x∗ =

( −1
3
1

)

is found after 40 iterations. �

5.2.2 The Approximate Newton’s Method

In many instances, it is not possible (or efficient) to find a closed formula for the
matrix DF (x) which is needed for Newton’s method; cf. (5.20). In these cases,
finite difference approximations can be used to estimate each entry of DF (x). The
resulting method is called the Approximate Newton’s Method.

The entry of DF (x) on the position (i, j), i.e., ∂Fi

∂xj
(x), is estimated using forward

finite differences approximations (7.2) as

∂Fi

∂xj
(x) ≈ ΔjFi(x) =

Fi(x + hej)− Fi(x)

h
, (5.22)


